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During the past few years NMR methods have greatly contributed to the advancement of cognitive 
neurosciences and have gained an unprecedented role in modern neurosciences. The avenue was 
paved by early interest in applying 31P NMR spectroscopy for brain energetics studies 1, followed by 
introduction of 1H NMR spectroscopy 2, 3 for non-invasive detection of several cerebral metabolites. 
The great value of 13C NMR for non-invasive neurochemistry was demonstrated in the late 80’s 4. 
Multinuclear NMR techniques have provided unique information from brain metabolism in vivo 
during baseline and activated states, such as from energy state, intracellular pH (pHi), glucose 
metabolism and neurotransmitter glutamate compartmentalisation 5.  
 
By far, MRI techniques play the greatest impact in modern neuroimaging both in clinical and 
research settings. There are a number of MRI techniques available providing data from cerebral 
haemodynamics in a truly non-invasive fashion, yet blood oxygenation level dependent (BOLD) 
MRI is the most commonly used functional neuroimaging method. BOLD signal, as revealed either 
by T2* or T2 MRI, is a composite robust response of haemodynamics and oxidative metabolism to 
brain activation. MRI techniques have been developed to directly probe cerebral blood flow (CBF) 6, 

7 and cerebral blood volume (CBV) 8, both essential components of the haemodynamic response 
(HDR), without need for injection of contrast agents, to complement BOLD fMRI for neuroimaging. 
 
In this account physiology of cerebral haemodynamics as well as oxygen and glucose metabolism 
will be discussed from a view point of user of NMR techniques. The focus will be on CBF and 
cerebral oxygen metabolism (CMRO2) responses to brain activation, with discussion on adaptations 
of cerebral metabolism during increased energy demand. 
 
Baseline CBF, glucose metabolism and CMRO2 
 
Brain consumes O2 and glucose at high rates for maintenance of ionic gradients across neural cell 
plasma membrane. It has been estimated that in human brain close to 85% of ATP consumption is 
accounted for by post-synaptic ion pumping and action potentials 9. Substrates for cerebral energy 
metabolism are supplied by CBF amounting to ~60 ml/min/100g of the brain tissue. Baseline 
CMRO2, as measured by positron emission tomography (PET), in adult human brain proceeds at 1.5 
– 1.7 µmol/min/100 g of tissue 10. Baseline cerebral metabolic rate of glucose (CMRGlu) by PET is ~ 
0.4 µmol/min/100 g of tissue 10. Using Kety-Schmidt technique, Lund-Madsen et al. showed that the 
stoicheiometric ratio of CMRO2-to-CMRGlu is, indeed, close to 6 11. Thus, this high ratio 
demonstrates that main body of baseline glucose metabolism is oxidative and only minute portion of 
glucose (~5%) is metabolised to lactate, consistent with the PET data. Autoradiographic 
quantification of CBF and CMRGlu has shown large regional variation between gray and white 
matter as well as between individual brain structures within gray matter 12. On average CBF is 2- to 
3-fold and CMRGlu 3-4-fold greater in gray than in white matter. The difference in these variables 
has been attributed to the amount of neuronal activity. 
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Haemodynamics and CMRO2 during brain activation 
 
It is well established with a several techniques that the stoicheiometries between CBF and CMRO2 
as well as between CMRO2 and CMRGlu breaks down when neuronal workload increases. In mental 
processing, stimulated by Wisconsin card sorting test, CBF and CMRGlu increase at global level by 
15 and 12%, respectively, however, CMRO2 does not change at all 11. Arterio-venous difference 
across the brain increased by 47% during this mental exercise, yet the proportion of glucose 
appearing in venous blood increased from baseline value of 6% to 8% during brain activation. This 
indicates that majority of CMRGlu increase is oxidative in nature. PET studies of the somatosensory 10 
and visual 13 cortices demonstrated that at focal level CBF and CMRGlu increased by ~50% relative to 
baseline, whereas only 5-10% elevation in CMRO2 was evident. As a result of these haemodynamic 
and metabolic adaptations, oxygen saturation in cerebral venous blood increases. 
 
The interrelationship between cerebral oxygen consumption and oxygen delivery can be written as: 
 

HctCBFY
CMROOER

a ••
= 2    Eq. 1 

where OER is oxygen extraction ratio (known also as oxygen extraction fraction = OEF), Ya the 
arterial oxygen saturation, and Hct the haematocrit. This relationship is valid under two conditions; 
firstly, tissue O2 tension (ptO2) is assumed to be close to zero and secondly, O2 transport to the tissue 
is unidirectional. Both these conditions encounter in the mammalian brain. Considering the observed 
cerebral CBF and metabolic adaptations above, baseline OER of close to 0.4 must decline during 
neuronal activation. Indeed, both PET 13 and MRI 14, 15 based methods have shown that OER 
decreases by 30 to 40% in association to brain activation. 
 
Localised increase in CBF, CBV and decline in OER are ‘physiological substrates’ for non-invasive 
functional brain imaging techniques. All of these can be quantitatively probed with specific MRI 
techniques. Why exactly CBF increases beyond the need of CMRO2 during elevated brain workload, 
is not fully understood, yet physiologic and neurochemical literature dealing with this phenomenon 
is overwhelming. Primary function of mitochondria is to maintain Gibbs free energy of ATP 
(∆GATP) in cytoplasm within tight limits. For instance, in myocardium ∆GATP is maintained at -60 
kJ/mol despite three-fold variation in oxygen consumption 16. CMRO2 changes only very moderately 
from baseline to activated state and therefore, one would expect to see also moderate CBF response, 
if cerebral O2 consumption and delivery were quantitatively matched. Cerebral resistance arteries are 
sensitive to numerous ‘messenger’ molecules, such as CO2, H+, K+, NO, adenosine, aracidonic acid 
metabolites, glutamate 17 and noradrenaline 18. It is likely that one or several of these substances 
mediate the vasodilatory signal from ‘neural cells’ to the vasculature. 
 
Microelectrode measurements of ptO2 have revealed interesting spatial variation in the brain 
parenchyma 19, 20. In the cat visual pathway simultaneous recording of ptO2 and single cell activity 
shows that ptO2 decreases in the sites with increased neuronal spike rate followed by an overshoot 
with or without a subsequent undershoot in ptO2 19. Microelectrode recordings have shown that the 
type of visual stimulus determines the shape of ptO2 response curve. For instance, in a single neuron 
variation of orientation angle of the light stimulus either elicits firing accompanied with ptO2 
changes described above or does not activate the cell, but leads to elevation of ptO2 20. These results 
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are interpreted to indicate that (i) neuronal firing declines ptO2, because CBF response is delayed, 
and (ii) in some other cases, CBF response ‘exceeds’ the territory of activated area causing ‘luxury’ 
oxygenation of the tissue outside activated area. These findings are very important in the light of 
physiological mechanisms of CBF response and interpretation of oxygenation changes in 
neurophysiology equivalents showing that (a) CBF increase is delayed relative to neuronal firing, (b) 
there is an early deoxygenation of tissue and consequently, also of blood, and (c) ptO2 can increase 
without preceding neuronal firing and therefore, CBF can increase in areas with baseline brain 
activity. One may conclude from the microelectrode work that tissue deoxygenation would be a 
good marker for imaging of neuronal activity, instead to the delayed ‘over-oxygenation’, which is 
associated with CBF response with little, if any, neuronal stimulation.  
 
Optical imaging work using haemoglobin as an endogenous source of signal have revealed that 
almost immediately following the onset of stimulation, an increase in [Hb] occurs in rat somato-
sensory 21 and barrel cortex 22. Concurrent monitoring of CBF by Laser-Doppler has shown that 
increase in CBF begins a second or so after first signs of local increase in [Hb]. Following CBF 
response reciprocal increase in [Hb-O2] and decrease in [Hb] are evident together with overall 
elevation of CBV 22. Interestingly, deoxygenation of both ptO2 and haemoglobin, as determined by 
two different methods, appear to coincide preceding the CBF response. This means that CMRO2 
must increase almost instantaneously to neuronal firing, consistent with the thermodynamic role of 
mitochondrial bioenergetics illustrated above. The findings cited above also suggest that CMRO2 
response, as reflected by deoxygenation of ptO2, localize neuronal activity (indicated by single cell 
firing) much more accurately than any other endogenous component of metabolism or HDR, such as 
ptO2 ‘over-oxygenation’ or accumulation of [Hb-O2]. Importantly, these data also imply that CBF 
(i.e. perfusion) response is not better localized to the activation site than build up of [Hb-O2], 
contrasting a commonly accepted concept in fMRI literature. 
 
The physiology of CBF and CMRO2 during neuronal activation raises a fundamental question: why 
is there a breakdown of the mismatch between CBF and CMRO2 during increased workload in the 
brain. This question remains unanswered for time being. Several hypotheses have been put forward 
to address the mismatch (see 23, 24), all of these are supported by experimental evidence. In this 
context, two views are considered. Firstly, the ‘energy hypothesis’ and ‘neurotransmission 
hypothesis’. The former claims that O2 requirement of mitochondrial energy metabolism directly 
results in excessive CBF response. One proposed underpinning reason for mismatch of CBF and 
CMRO2 may be limited oxygen diffusion in the tissue placing high CBF requirements to satisfy need 
by the oxidative metabolism. There are several potential messengers from the energy metabolism to 
the resistance arteries, such as CO2 and H+. The latter hypothesis stipulates that neurotransmission as 
such, in the form of neurotransmitters and/or neuromodulators, leads to opening of resistance arteries. 
In this scenario, cerebral O2 needs will become (over)satisfied as a result of vasodilatation caused by 
factors of secondary importance for metabolism. There are a number of neurotransmitters, such as 
glutamate, adenosine, NO and noradrenaline, with documented effects on vascular resistance. 
 
BOLD signal 
 
Light absorption properties of blood are strongly affected by oxygen saturation, as we all recognise. 
It became evident early on that also transverse relaxation rate (R2) in blood is both haemotocrit and 
oxygen saturation dependent 25, 26. Paramagnetic Hb inside intact erythrocytes generates field 
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gradients that affect transverse relaxation of water diffusing in the vicinity of erythrocytes and/or 
exchanging between plasma and erythrocyte cytoplasm 27. In deoxygenated blood R2 (and inevitably 
also R2*) is more efficient than in oxygenated blood. Thus, it is conceivable that T2*-weighted signal 
from brain parenchyma increases in the activated brain areas as a result of focal decline in OER and 
concomitant increase in oxygen saturation of postcapillary blood. This BOLD fMRI signal 
characteristic, referred to as the ‘positive BOLD’, is the most commonly used contrast in modern 
functional brain imaging studies.  
 
The BOLD signal has several well documented time-dependent characteristics. Firstly, there is a 
delay up to several seconds after stimulus onset prior to start of the positive signal deflection. 
Secondly, several recent studies performed at fields ranging from 1.5T 28, 4 T 29 7 T30 to 9.4 T 31 have 
revealed a negative signal deflection that precedes the positive BOLD response. Interestingly, 
microelectrode studies have indicated that deoxygenation in ptO2 very much coincides the initial dip 
by MRI. Finally, following the positive BOLD signal a negative long-lasting deflection is evident. 
This is the so-called BOLD post-stimulus undershoot 32. The post-stimulus undershoot has typically 
similar or even longer duration than the positive BOLD.  
 
Interplay of haemodynamic and metabolic factors on BOLD signal characteristics has been 
extensively studied and several ‘models’ 33-35 have been created to explain their mutual interactions 
on T2(*)-weighted fMRI signal. It is commonly accepted that the positive BOLD results from 
prolongation of T2(*) in post-capillary blood caused by decline in [Hb] due to decreased OER 
together with increase in local CBV. The effect of CBV is understandable, because at low and 
intermediate field strengths blood T2(*) is longer than that of tissue.  
 
In contrast, physiology underlying both initial dip and post-stimulus undershoot is subject to debate. 
It has to be appreciated that the initial dip is very difficult to be reliably detected by fMRI and 
special care is needed both for acquisition of high signal-to-noise-ratio data 36, physiological noise 
reduction and image processing 30. Both optical imaging and microelectrode studies have shown 
almost instantaneous deoxygenation of both haemoglobin and tissue preceding the excessive CBF 
response. These observations underscore temporal mismatch between CMRO2 and CBF responses 
very soon after neural activation. The current consensus is that the initial dip reflects local build-up 
of [Hb] before CBF increase. The echo time dependency of initial dip signal size is consistent with 
contribution of [Hb] accumulation to the early negative fMRI signal deflection 37. 
 
The BOLD post-stimulus undershoot is very commonly detected by standard T2*-weighted fMRI. In 
their papers published in mid 90s, Frahm and co-workers termed the undershoot signal after positive 
BOLD as ‘a negative uncoupling’ 32. The rationale behind this term lays in observations that during 
BOLD post-stimulus undershoot in the human visual cortex CBF, as determined by MRI, proceeded 
at baseline level 32. Several other fMRI studies have confirmed that CBF returns to baseline much 
before termination of post-stimulus undershoot 38, 39. Lu et al. quantified also CBV with two second 
temporal resolution in the visual cortex 39. They reported that also CBV returns to baseline soon after 
positive BOLD response, following similar kinetics to CBF. Lu et al. estimated CMRO2 from the 
multimodal fMRI data during post-stimulus undershoot 39. The data showed persistent high CMRO2 
during BOLD undershoot with baseline CBF. These observations argue for metabolic cause for the 
undershoot, i.e. build up of [Hb]. In this regard, an interesting observation is that following mental 
activation, global metabolism of O2 and glucose remains persistently perturbed 11. 
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A haemodynamic background for the BOLD post-stimulus undershoot has been put forward by 
Mandeville et al. 40 and Buxton and Frank 23. Working with anaesthetised rats, Mandeville and co-
workers observed that CBV, as quantified by blood-pool contrast agent based MRI, returns to 
baseline much later than BOLD undershoot 40. The balloon model by Buxton and Frank claims that 
venous blood volume stays elevated some time after stimulus cessation. Mandeville et al. modified 
the model to incorporate delayed (venous) compliance into the model 40. Hoge et al. found that in the 
human visual cortex positive BOLD signal and post-stimulus undershoot were associated with 
similar transients in CBF, as determined with MRI techniques 41. They concluded that CBV was 
returning slowly to baseline during post-stimulus undershoot consistent with the data by Mandeville. 
Recent high spatial resolution BOLD fMRI and CBV imaging have indicated that CBV may or may 
not be elevated in cortical layers. Yacoub et al. found that in the cat visual field 18 BOLD 
undershoot was evident in both parenchyma and brain surface vessel area, yet CBV stayed elevated 
only in parenchyma 42. Thus, physiological mechanisms for the BOLD post-stimulus undershoot may 
vary within brain cortex. 
 
BOLD and baseline flow 
 
Degree of mismatch between CMRO2 and CBF is a key factor determining the size of BOLD signal 
locally. Baseline CBF may influence the BOLD response and in such case, it would be important to 
be known, because several brain activation paradigms, such as Wilcoxon card sorting test 11, 
cognitive and motor task 43, lead to increase in global CBF. The relationship between baseline 
(global) CBF and (local) BOLD signal characteristics has been experimentally approached during 
hypo- and hypercapnia. PET techniques were used to quantify CBF both at baseline and during 
visual activation 44, 45. Kemna and co-workers found that in mild hypocapnia CBF response was 
slightly smaller than in normocapnia, whereas in hypercapnia, stimulation induced flow increase was 
nearly absent 45. These data are interpreted in the context of the so-called constant relative model. 
Using PET imaging, Friston et al. reported that CBF responses to stimulation are additive to global 
CBF 46, thus supporting the so-called additive model. 
 
One can find support for these two models in fMRI literature. Hoge and co-workers found that both 
BOLD and perfusion responses during hypercapnia were additive in the visual cortex 47. These 
results, together with the paper by Corfield et al. 48, argue for the additive effect of CBF on BOLD 
response. Cohen et al. studied BOLD characteristics in the visual cortex at 7 T 49. They demonstrated 
that size of positive BOLD signal became greater in hypocapnia and smaller in hypercapnia, than 
that determined in normocapnia. Further, BOLD signal width was smaller and wider during former 
and latter challenge, respectively. This study supports the constant relative model of the HDR. 
Clearly, more controlled data is needed to settle this issue. Nevertheless, these papers underscore the 
impact of baseline CBF on BOLD fMRI data interpretation in terms of brain activity. 
 
BOLD and vessel type contributions 
 
Changes in blood oxygenation due to the HDR are greatest in the post-capillary and draining veins. 
Therefore it is not surprising that venous vasculature strongly contributes to the BOLD signal. This 
is particularly evident at low and intermediate field strength, where both gradient echo and spin echo 
fMRI signal gains strong contributions from macrovasculature 50-52. One can reduce the contribution 
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by macrovasulature by using flow dephasing gradients 53, high field system 51 with optimal echo 
times 54. A further effect high field (B0 >3T) exerts on BOLD is a decline in intravascular 
contribution 55. 
 
Mechanisms linking HDR and neuronal activation 
 
MRI techniques provide a good handle to cerebral haemodynamics and oxygenation, however, these 
are only indirectly linked to brain activity. It is not surprising if one finds split views in fMRI 
literature regarding mechanisms of coupling between CBF, CMRO2 and brain activation. Substantial 
number of papers supports 23, 33, 48 the energy hypothesis, i.e. control of the HDR by needs of 
mitochondrial energy metabolism. Similarly, recent multi-modal fMRI studies argue for mechanisms 
of CBF regulation that are independent of cerebral oxygen metabolism 39. Recent fMRI experiments 
performed in subjects exposed to mild hypoxia during brain activation have indicated heterogeneity 
in BOLD signal size within the activated brain area 56. These observations point to heterogeneity in 
OER within the activated cortex, suggesting that inherent heterogeneity in brain oxygen delivery and 
metabolism shown by microelectrode studies 19, 20 complicate interpretation of BOLD results in terms 
of underlying (neuro)physiology. 
 
Glucose metabolism during brain activation by NMR spectroscopy  
 
Both 31P and 1H NMR spectroscopy have been used to explore cerebral energy metabolites and 
lactate during brain activation. A decline in PCr/Pi ratio was detected by 31P NMR during exhaustive 
visual activation 57. 1H NMR spectroscopy provides access to lactate by revealing a -CH3 at 1.33 ppm. 
This doublet resonance is found in the chemical shift region with few, if any, other cerebral 
metabolites, yet residual signal from extracerebral lipids may encode to this spectral region. As 
indicated above, brain activation studies have shown that at global level CMRGlu increases and 
majority of this increase is oxidative 11. PET data, however, show that local CMRGlu go up much 
more than local CMRO2 indicating aerobic lactate accumulation. Microdialysis work has revealed 
lactate extrusion to the interstitial space during brain stimulation in rats 58, a finding agreeing with 
the PET scans. 1H NMR studies have shown all possible directions for brain lactate change during 
activation. Some studies have demonstrated no change 59, some an increase 57, 60 and finally, some a 
decrease 59 in NMR detectable lactate. Interestingly, visual activation during mild hypoxia, when 
evoked brain responses are retained at euoxic levels, does not result in accumulation of 1H NMR 
detectable lactate 56, 61. These data, as supported by 1H NMR spectroscopy papers above, fit to the 
idea that glucose metabolism during increased brain activity is oxiditative. 
 
Recent NMR spectroscopy studies exploiting 13C-labelled glucose have provided interesting 
neurochemical information from cerebral metabolism during activation. The beauty of using NMR 
with enriched 13C-glucose is that one can follow glucose metabolism beyond cytoplasmic pathways 
all the way to the tricarboxylic acid cycle (TCA) and beyond 62. In fact, labeling kinetics of 
glutamate C4 and C3/C2 has been used to quantify TCA cycle rate, which is ultimately linked to 
CMRO2. Chen and co-workers 63 exploited indirect detection of 13C-labelled metabolites, including 
glutamate C4, in the human brain. They estimated that TCA cycle rate increased by ~30% during 
visual stimulation representing ceiling response for CMRO2. Chhina et al. used direct detection of 
13C with NOE enhancement 64. Following visual stimulation labeling of glutamate C4 increased by 
50-60% suggesting that TCA cycle rate increased as much as CMRGlu reported by PET 13. One has to 
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realise, however, that PET measures glucose uptake and phosphorylation, not glycolysis. 
Nevertheless, the fact that no 13C label accumulation was seen in lactate during visual stimulation 
tend to favour the idea that ∆CMRGlu occurs oxidatively. This observation agrees with the results 
from human data obtained from arterio-venous difference measurements 11. 
 
Conclusions 
 
Surge of fMRI for cognitive neuroscience has resulted in renaissance of the physiology research of 
haemodynamics and its relationships with brain activation. NMR techniques are playing a key role 
in this pursuit and perhaps may finally help to untangle the physiological substrates linking the HDR 
and neural activity. 
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